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ABSTRACT

Cryo electron microscopy leads to 3-D image reconstruc-
tion problems. The data is one projection of each of many
different instances of the object. When the object has sym-
metry and is also heterogeneous, it is natural to describe the
object as stochastic with symmetrical statistics. This pa-
per describes methods for incorporating the symmetry into
expectation-maximization algorithms for the maximum like-
lihood solution of the reconstruction problem.

Index Terms— cryo electron microscopy, viruses, sym-
metrical statistics, maximum likelihood reconstruction

1. INTRODUCTION

An important approach to studying biological nanomachines
(e.g., viruses and ribosomes) is structural biology, which fo-
cuses on the geometric shape of the particle at resolutions as
small as atomic resolution and on the relationship between
geometry and biological function. An increasingly important
technique is single-particle cryo electron microscopy (cryo
EM). In cryo EM, a specimen containing thousands of par-
ticles is flash frozen to cryogenic temperatures and imaged.
The physics is such that the image is basically a highly-noisy
(SNR < 0.1) 2-D projection of the 3-D electron scattering in-
tensity distribution of the particle. However, for various tech-
nical reasons, only one projection is taken and the orientation
of the projection direction is unknown. So, instead of recon-
structing based on a full set of oriented projection images of
a single particle, as is done in x-ray computed tomography
in medical imaging, many images each of different instances
of the particle and with different and unknown projection di-
rections much be computationally combined to compute the
reconstruction [1]. Standard approaches assume that the par-
ticles are either identical or are members of a small number
of discrete classes such that all particles in a class are identi-
cal. In [2, 3], we demonstrated an approach to reconstruction
which includes both discrete classes and continuous variabil-
ity of the particles within each class.

Many viruses of both animals and plants belong to the
class of “spherical” viruses for which case the virus particle

We are grateful to NSF 1217867 for funding.

has a shell of protein, called a “capsid”, surrounding a cav-
ity containing the viral genome. Typical sizes and molecular
weights of the virus particles are 102–103Å and 10MDa. The
capsid is constructed of many repetitions of the same peptide
molecule in geometric arrays similar to human-constructed
geodesic domes. The capsid has a geometric symmetry, of
which the most common is icosahedral symmetry (i.e., the
symmetries of the icosahedron whose surface is 20 equilat-
eral triangles and which has 2-fold rotational symmetry axes
at the midpoint of each edge of each triangle, 3-fold rotational
symmetry axes at the center of each triangle, and 5-fold ro-
tational symmetry axes at each vertex of each triangle for a
total of 60 symmetry operations). Focus on the virus particles
within one class. The standard view is that each instance of
the virus particle is identical and exactly obeys the symmetry.
An intermediate view is that the different instances are differ-
ent (due, for example, to the inherent flexibility of such a large
molecular complex) but still each instance exactly obeys the
symmetry [2, 3]. This paper considers a more sophisticated
view which is that the different instances of the particle are
different and that it is the statistics of the particle that obey
the symmetry not the individual particles.

Conditional on class membership, each particle can be de-
scribed as a linear combination of basis functions where the
weights in the linear combination are Gaussian random vari-
ables [2, 3]. Because the viral particles are roughly spherical
in shape and the icosahedral symmetry is a rotational symme-
try, it is natural to use spherical coordinates (x = (x, θ, φ)).
Because of the group theory, it is natural to use vector valued
angular basis functions Iζ(θ, φ) or equivalently Iζ(x/x) and
therefore vector valued radially-dependent weights cζ(x) so
that the weighted linear combination of basis functions has
the form

ρ(x) =
∑
ζ

ITζ (x/x)cζ(x) (1)

where ρ(x) is the electron scattering intensity of a virus par-
ticle, and T is transpose. Because ρ(·) is real, it is convenient
to have real-valued basis functions and weights.

The goal of the maximum likelihood (ML) reconstruction
procedure is to determine the mean vector and covariance
matrix of the vector of weights cζ(x), which is a general-
ization of classical ML Gaussian mixture parameter esti-
mation [4]. Our current software running on a desktop PC
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can solve problems with about 103 weights. Because of the
Gaussian assumption, only the behavior of the first two mo-
ments need to be specified and the natural specification is [3]
ρ̄(R−1g x) = ρ̄(x) and Rρ(R

−1
g x1, R

−1
g x2) = Rρ(x1,x2)

where ρ̄(·) is the mean function and Rρ(·, ·) is the cor-
relation function of the electron scattering intensity ρ(·),
Rg ∈ IR3×3 is the gth rotation matrix of the symmetry
group, and x,x1,x2 ∈ IR3. Choosing basis functions
and determining conditions on the weights which guaran-
tee ρ̄(R−1g x) = ρ̄(x) is straightforward [3]. But the condition
Rρ(R

−1
g x1, R

−1
g x2) = Rρ(x1,x2) is more challenging and

is the subject of this paper.

2. REAL-VALUED ANGULAR BASIS FUNCTIONS

It is necessary to have a set of angular basis functions that
are a complete orthonormal system on the surface of the
sphere. Looking forward to Section 3, it is convenient to have
each basis function possess well-characterized transformation
properties under the rotations of the symmetry group. The
natural way to achieve these two objectives is to use angu-
lar basis functions that transform as one of the irreducible
representations (irred reps) of the group. A standard group
theory approach to determine such basis functions is to apply
projection operators to the spherical harmonics [5, p. 93].

2.1. Projections of spherical harmonics and construction
of a basis

Because the symmetry group is finite, the projection operator
Ppµ,ν applied to a function ψ(x) is a weighted sum of sym-
metry operators P (g) applied to ψ(x) where the weights are
matrix elements of an irred rep and, for rotational operations,
P (g)ψ(x) = ψ(R−1g x):

Ppµ,νψ(x) =
dp
Ng

∑
g∈G

Γp(g)∗µ,νP (g)ψ(x) (2)

whereG is the group havingNg elements denoted by g, Γp(g)
is the matrix corresponding to group element g in the pth irred
rep of the group (p ∈ {1, . . . , Nrep}), and dp is the dimension
of Γp(g). For the icosahedral group, Ng = 60 and Nrep = 5.

Because spherical harmonics, denoted by Yl,m(x/x) (l ∈
N, m ∈ {−l, . . . ,+l}), form a complete orthonormal basis
on the surface of the sphere and have simple properties under
rotation, we choose to use ψ(x) = Yl,m(x/x). The rotational
property of Yl,m is

Yl,m

(
R−1g

x

x

)
=

+l∑
m′=−l

Dl
m′,m(α(g), β(g), γ(g))Yl,m′(

x

x
)

(3)
where Dl

m′,m(α(g), β(g), γ(g)) is the Wigner D coefficient
depending on (α(g), β(g), γ(g)) which are the Euler angles
of rotation at element g. Therefore, the projection operator
applied to a spherical harmonic can be expressed in the form

Ppµ,νYl,m(
x

x
) =

+l∑
m′=−l

Dpµ,ν,l,m,m′(g)Yl,m′(
x

x
) (4)

where
Dpµ,ν,l,m,m′(g) =

dp
Ng

∑
g∈G

Γp(g)∗µ,νD
l
m′,m(α(g), β(g), γ(g)).

(5)
Eqs. 4–5 can be used to compute a set of functions that

spans the subspace (degree l and irred rep p) by Algorithm 1.
However, the number of functions is more than is needed for a
basis. Specifically, for each l, Algorithm 1 provides 2l+1 dp-
dimensional vectors of basis functions by varying m through
the set {−l, . . . ,+l}. Therefore, the final basis of dimension
Np;l ≤ 2l + 1 is obtained by orthogonalizing the set of func-
tions.

Algorithm 1: Construct orthonormal basis functions
for a finite group where p ∈ {1, . . . , Nrep}, l ∈ N, and
m ∈ {−l, . . . ,+l}.

Data: Yl,m(x
x ), Γp, Dl

m′,m

Result: a dp × 1 vector of basis functions, Ip;l,m(x
x )

1 for i = 1; i <= dp; i+ + do
2 compute ψp,i;l,m(x

x ) = Ppi,iYl,m(x
x ) from Eq. 4

and then cp,i;l,m = ‖ψp,i;l,m(x
x )‖2

3 if cp,i;l,m 6= 0 then
4 Ip;l,m(x

x )[i] = 1
cp,i;l,m

ψp,i;l,m(x
x ), the ith entry

of vector Ip;l,m(x
x )

5 for j = 1; j <= dp, j 6= i; j + + do
6 Ip;l,m(x

x )[j] = ( 1
cp,i;l,m

)Ppj,iYl,m(x
x ),

computed from Eq. 4
7 end
8 break;
9 else

10 continue;
11 end
12 end

2.2. Computing a real-valued basis

Because the electron scattering intensity ρ(x) is real and there
are natural real-valued radial basis functions, it is convenient
to have real-valued angular basis functions Iζ(x/x), since
then the weights cζ(x) are also real valued. One approach
to determining real-valued angular basis functions is to use
irred reps that are real. In this case, the imaginary part of the
weights Dpµ,ν,l,m,m′(g) and the imaginary part of spherical
harmonics Yl,m′(x

x ) in Eq. 4 can be cancelled out.
For each of the Nrep possible irred reps of the icosahedral

group G, Liu, Ping, and Chen [6] give a set of Ng complex-
valued unitary matrices denoted by Γpc for p ∈ {1, . . . , Nrep}.
Let χp(g) be the character of element g ∈ G in the ir-
red rep Γpc , i.e., the trace of Γpc . For all p sets of Γpc ,
1/Ng

∑
g∈G χ

p(g)2 = 1. Therefore, by Theorem II and III
in Ref. [5, p. 128-129], it follows that there exist equiva-
lent irred reps for the icosahedron group with real-valued
matrices, denoted by Γpr , and such real unitary irred rep ma-
trices can be computed by a similarity transformation from

1445
Authorized licensed use limited to: MIT. Downloaded on July 25,2024 at 04:50:39 UTC from IEEE Xplore.  Restrictions apply. 



the complex matrices provided by Liu, Ping, and Chen [6],
i.e., Γpr(g) = (Sp)TΓpc(g)Sp with some unitary matrix Sp

for p ∈ {1, . . . , Nrep}. We have done this and the algo-
rithm, software, and numerical values of the Sp matrices are
available from the authors.

Computation of Dpµ,ν,l,m,m′ (Eq. 5) requires computation
of Wigner D coefficients which in turn require knowledge of
the Euler angles describing the rotation corresponding to each
element of the group. These angles are not unique, since if the
icosahedron is positioned in different orientations, the sym-
metry rotations (and therefore the Euler angles) are typically
different. Zheng and Doerschuk [7] give a 3-D irred rep of the
icosahedral group which is exactly the symmetry rotation ma-
trices for an icosahedron that is positioned in a standard orien-
tation (the z axis passes through two opposite vertices and the
xz plane includes one edge of the icosahedron). In order to
use the corresponding Euler angles in Eq. 5, a permutation of
the Zheng and Doerschuk [7] irred rep was determined so that
the resulting multiplication table matched the table of Liu,
Ping, and Chen [6] and such that there was a similarity trans-
formation between the permuted Zheng and Doerschuk [7]
irred rep and the p = 2 Liu, Ping, and Chen [6] irred rep. The
permuted irred rep is denoted by Rg (g ∈ {1, . . . , Ng}). The
algorithm and numerical results are available upon request.

With the five real-valued irred reps and the Euler angles
of the previous two paragraphs, first Dpµ,ν,l,m,m′ (Eq. 5) and
then the complete set of angular basis functions, denoted by
Ip;l,n(x/x) where n ∈ {1, ..., Np;l}, can be computed. For
visualization purposes, define the 3-D object ξ(x) by

ξ(x) =

{
1, x ≤ κ1 + κ2Ip;l,n(x/x)
0, otherwise (6)

where κ1 and κ2 are chosen so that κ1 +κ2Ip;l,n(x/x) varies
between 0.5 and 1. Examples are shown in Figure 1. These
calculations have been verified in several ways. The number
of basis functions in the subspace of square integrable func-
tions on the surface of the sphere which is defined by a fixed
value of l has dimension 2l + 1. The number of functions
resulting from the orthogonalization, when summed over all
p values, has been verified to be 2l + 1 as expected. The
dp-dimensional vector basis functions are expected to have
a specific transformation property under rotations from the
group [5, p. 20], in particular,

Ip;l,n(R−1g x/x) = (Γpr(g))T Ip;l,n(x/x), (7)

which has also been verified. Note that this is transpose in-
stead of Hermitian transpose.

3. SYMMETRY CAUSES CONSTRAINTS ON THE
COVARIANCE MATRIX

Achieving Rρ(R
−1
g x, R−1g x′) = Rρ(x,x

′) requires con-
straints on the second order statistics of the radially-dependent

p = 1 p = 2

p = 3 p = 4 p = 5

Fig. 1: An icosahedron with one of each type of symme-
try axis (2-, 3-, and 5-fold) shown and example angular basis
functions with l = 10 and p ∈ {1, . . . Nrep}. The surfaces of
3-D objects defined by Eq. 6 are visualized by UCSF Chimera
where the color indicates the distance from the center of the
object. Note that p = 1 exhibits all of the symmetries of an
icosahedron.

weights cζ(x) in the orthonormal expansion (Eq. 1) that rep-
resents the electron scattering intensity where ζ is shorthand
for p; l, n.

3.1. Concrete form for the symmetry constraint

By definition, Rρ(x,x′) = IE
[
ρ(x)ρT (x′)

]
. Use Eq. 1 twice

and simplify. Do the same for Rρ(R−1g x, R−1g x′) by using
the transformation property (Eq. 7). Then equating the two
expressions gives the requirement that∑
ζ

∑
ζ′

ITζ (
x

x
)IE
[
cζ(x)cTζ′(x

′)
]
Iζ′(

x′

x′
)

=
∑
ζ

∑
ζ′

ITζ (
x

x
)(Γpf (g))T IE

[
cζ(x)cTζ′(x

′)
]

Γpf (g)Iζ′(
x′

x′
)

for all g ∈ {1, . . . , Ng}. On both sides, multiply on the left
by Iζ1(x/x) and on the right by ITζ2(x′/x′) and integrate over
the surface of the x and x′ spheres. Since the basis functions
are orthonormal on the surface of the sphere, this implies that

IE
[
cζ1(x)cTζ2(x′)

]
= (Γp1(g))T IE

[
cζ1(x)cTζ2(x′)

]
Γp2(g).

Therefore, since the irred rep is unitary (Γp(g)−1 = Γp(g)T ),
it follows that

Γp1(g)IE
[
cζ1(x)cTζ2(x′)

]
= IE

[
cζ1(x)cTζ2(x′)

]
Γp2(g) (8)

for all g ∈ {1, . . . , Ng}, x, x′ ≥ 0, p1, p2 ∈ {1, . . . , Nrep},
l1, l2 ∈ {0, 1, . . . }, n1 ∈ {1, . . . , Np1;l1}, and n2 ∈ {1, . . . , Np2;l2}.

To make this work suitable for computation, the radially-
dependent weights are expressed as an orthonormal expansion
in the form cζ(x) =

∑∞
q=1 cζ,qhl,q(x) where both cζ,q and
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hl,q(x) are real-valued and the radial basis hl,q(x) is exactly
the family of functions used in Ref. [8, Section IIIB] with the
orthonormality condition

∫∞
r=0

hl,q(x)hl,q′(x)x2dx = δq,q′ .
Use the orthonormal expansion twice on both sides of Eq. 8,
multiply both sides by hl1,q(x)hl2,q′(x

′), and integrate x and
x′ on [0,∞) with integration measure x2x′

2
dxdx′ to get

Γp1(g)IE
[
cζ1,qc

T
ζ2,q′

]
= IE

[
cζ1,qc

T
ζ2,q′

]
Γp2(g) which must

be true for all g ∈ {1, . . . , Ng}, q, q′ ∈ {1, 2, . . . }, p1, p2 ∈
{1, . . . , Nrep}, l1, l2 ∈ {0, 1, . . . }, n1 ∈ {1, . . . , Np1;l1}, and

n2 ∈ {1, . . . , Np2;l2}. Note that its solution for IE
[
cζ1,qc

T
ζ2,q′

]
does not depend on ζ1, q, ζ2, and q′ except that unspecified
degrees of freedom in the solution could depend on ζ1, q, ζ2,
and q′. Therefore, the above equation can be simplified to

Γp1(g)Vp1:p2 = Vp1:p2Γp2(g) (9)

for some dp1 × dp2 matrix Vp1:p2 , which must be true for all
g ∈ {1, . . . , Ng} and p1, p2 ∈ {1, . . . , Nrep}.

Then, the problem is to determine the form of the matrix
Vp1:p2 to solve Eq. (9), with the additional constraint that its
sub-blocks must be a real-valued positive semidefinite matrix
since it is a covariance matrix and the cζ,q vectors are actually
real valued.

3.2. Solution of the symmetry constraint

Eq. 9 has substantial structure because the Γp2(g) are an irred
rep. Schur’s Lemma [5, Theorem I and II, Section 4.5, p. 80]
and related results imply that

Vp1:p2 =

{
vp1((l1, n1, q1), (l2, n2, q2))Idp1 , p1 = p2
0dp1 ,dp2 , otherwise

where 0i,j is the i× j zero matrix.
The covariance matrix V constructed from all of the

IE
[
cζ1,qc

T
ζ2,q′

]
sub-blocks must be a real-valued positive

semidefinite matrix. Recall that this is a structured situa-
tion since the solution for IE

[
cζ1,qc

T
ζ2,q′

]
depends explicitly

on p1 and p2 but depends on l1, n1, q1, l2, n2, q2 only
through the unspecified degree of freedom of IE

[
cζ1,qc

T
ζ2,q′

]
.

Suppose that the indices vary from slowest to fastest in the
order p, l, n, and q. Let the number of triples of (l, n, q)
be Nζ,q. To simplify notation, let α ∈ {1, . . . , Nζ,q} rep-
resent the (l, n, q) indices. Then p is constant over sequen-
tial sets of dpNζ,q rows and columns. Therefore the entire
covariance matrix V is block diagonal with five blocks, cor-
responding to the five values of p. The pth block itself is
organized into subblocks (themselves diagonal) with value
vp((l1, n1, q1), (l2, n2, q2))Idp which are not specified by
Eq. 9. So the pth block is of the form Vp:p =

vp(1, 1)Idp vp(1, 2)Idp . . . vp(1, Nζ,q)Idp
vp(2, 1)Idp vp(2, 2)Idp . . . vp(2, Np;l,n,q)Idp

...
...

. . .
...

vp(Nζ,q, 1)Idp vp(Nζ,q, 2)Idp . . . vp(Nζ,q, Nζ,q)Idp


(10)

where vp(i, j) = vp(α1 = i, α2 = j) for i, j ∈ {1, ..., Nζ,q}
and p ∈ {1, ..., Nrep}.

A block-diagonal matrix can be a real-valued positive
semidefinite matrix if and only if each of the blocks is a real-
valued positive semidefinite matrix. In order to have Eq. 10
be a real-valued positive semidefinite matrix it is necessary
that vp(i, i) ≥ 0 for i ∈ {1, ..., Nζ,q} and p ∈ {1, ..., Nrep}.
In addition, the off diagonal terms must decrease sufficiently
quickly.

4. FUTURE WORK

We are currently revising the software of Ref. [3] to include
the basis functions of Section 2, the constraint on the second
moments IE

[
cζ1,qc

T
ζ2,q′

]
of the weights cζ,q from Section 3,

and various related changes (e.g., change the integration rule
in the expectation-maximization algorithm that computes the
ML estimate of the weights cζ,q) which will enable the soft-
ware to solve these important electron microscopy image re-
construction problems with a complete treatment of the sym-
metry of the virus object which is a completely novel addition
to computational structural biology.
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